ATP Dependence of Na+/H+ Exchange

نویسندگان

  • Nicolas Demaurex
  • Robert R. Romanek
  • John Orlowski
  • Sergio Grinstein
چکیده

We studied the ATP dependence of NHE-1, the ubiquitous isoform of the Na+/H+ antiporter, using the whole-cell configuration of the patch-clamp technique to apply nucleotides intracellularly while measuring cytosolic pH (pHi) by microfluorimetry. Na+/H+ exchange activity was measured as the Na(+)-driven pHi recovery from an acid load, which was imposed via the patch pipette. In Chinese hamster ovary (CHO) fibroblasts stably transfected with NHE-1, omission of ATP from the pipette solution inhibited Na+/H+ exchange. Conversely, ATP perfusion restored exchange activity in cells that had been metabolically depleted by 2-deoxy-D-glucose and oligomycin. In cells dialyzed in the presence of ATP, no "run-down" was observed even after extended periods, suggesting that the nucleotide is the only diffusible factor required for optimal NHE-1 activity. Half-maximal activation of the antiporter was obtained at approximately 5 mM Mg-ATP. Submillimolar concentrations failed to sustain Na+/H+ exchange even when an ATP regenerating system was included in the pipette solution. High ATP concentrations are also known to be required for the optimal function of other cation exchangers. In the case of the Na/Ca2+ exchanger, this requirement has been attributed to an aminophospholipid translocase, or "flippase.". The involvement of this enzyme in Na+/H+ exchange was examined using fluorescent phosphatidylserine, which is actively translocated by the flippase. ATP depletion decreased the transmembrane uptake of NBD-labeled phosphatidylserine (NBD-PS), indicating that the flippase was inhibited. Diamide, an agent reported to block the flippase, was as potent as ATP depletion in reducing NBD-PS uptake. However, diamide had no effect on Na+/H+ exchange, implying that the effect of ATP is not mediated by changes in lipid distribution across the plasma membrane. K-ATP and ATP gamma S were as efficient as Mg-ATP in sustaining NHE-1 activity, while AMP-PNP and AMP-PCP only partially substituted for ATP. In contrast, GTP gamma S was ineffective. We conclude that ATP is the only soluble factor necessary for optimal activity of the NHE-1 isoform of the antiporter. Mg2+ does not appear to be essential for the stimulatory effect of ATP. We propose that two mechanisms mediate the activation of the antiporter by ATP: one requires hydrolysis and is likely an energy-dependent event. The second process does not involve hydrolysis of the gamma-phosphate, excluding mediation by protein or lipid kinases. We suggest that this effect is due to binding of ATP to an as yet unidentified, nondiffusible effector that activates the antiporter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATP dependence of NHE-1, the ubiquitous isoform of the Na+/H+ antiporter. Analysis of phosphorylation and subcellular localization.

ATP is not hydrolyzed during the transport cycle of the Na+/H+ exchanger (NHE), yet depletion of the nucleotide drastically reduces the rate of cation exchange. The mechanism underlying this inhibition was investigated in fibroblasts transfected with NHE-1, the growth factor-sensitive isoform of the antiport. NHE-1 was found to be phosphorylated in serum-starved, unstimulated cells. Acute ATP d...

متن کامل

ATP dependence of calcium uptake by the Na-Ca exchanger of adult heart cells.

The ATP dependence of the Na-Ca exchanger was investigated in isolated adult rat heart cells to evaluate the extent to which ATP depletion after a period of ischemia plus reperfusion in whole hearts could limit calcium uptake by Na-Ca exchange. A standard state for measurement of Na-Ca exchange activity that could be used with cells depleted of ATP to different degrees was defined. This was a s...

متن کامل

Nucleotide Specificity and Assessment of the Role of Phospholipids

We studied the ATP dependence of NHE-1, the ubiquitous isoform of the Na 1 /H 1 antiporter, using the whole-cell configuration of the patch-clamp technique to apply nucleotides intracellularly while measuring cytosolic pH (pH i ) by microfluorimetry. Na 1 /H 1 exchange activity was measured as the Na 1 -driven pH i recovery from an acid load, which was imposed via the patch pipette. In Chinese ...

متن کامل

Na+/H+ antiport: modulation by ATP and role in cell volume regulation.

Na+/H+ antiport is a major determinant of intracellular pH (pHi) and also plays an important role in the maintenance of cellular volume. Na+/H+ exchange through NHE-1, the ubiquitous isoform of the antiporter, is accelerated by cytosolic acidification and also by osmotically induced cell shrinking, thereby promoting recovery of the physiological pHi and volume, respectively. Although hydrolysis...

متن کامل

Metabolic inhibition in the perfused rat heart: evidence for glycolytic requirement for normal sodium homeostasis.

Subcellular compartmentalization of energy stores to support different myocardial processes has been exemplified by the glycolytic control of the ATP-sensitive K+ channel. Recent data suggest that the control of intracellular sodium (Nai) may also rely on glycolytically derived ATP; however, the degree of this dependence is unclear. To examine this question, isolated, perfused rat hearts were e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 109  شماره 

صفحات  -

تاریخ انتشار 1997